Capteur LoraWan Enless Tx Contact

Présentation

Dans le cadre de ce TP, nous utilisons un capteur de transmission sans fil, qui transmet l'information d'ouverture ou de fermeture de 2 contacts.

La passerelle utilisée est une passerelle privée qui nous appartient, le serveur LoraWan utilisé sera celui de TTN qui est gratuit. Les informations du serveur LoraWan TTN seront transmises en MQTT à un serveur interne au lycée (Raspberry ou PC sous Windows).

Etude des caractéristiques du capteur

Le capteur utilisé est un capteur TX CONTACT de la marque ENLESS et dont les documentations sont jointes à ce TP.

⇒ A l'aide de la documentation jointe (Fiche d'aide à l'installation , annexe 5), préciser les fils à utiliser pour les 2 entrées « contact sec ». Faire un petit schéma avec 2 contacts NO et les fils à utiliser.

⇒ A l'aide de la doc. (annexe 1), déterminer la position du cavalier pour faire fonctionner le module en LoraWan et vérifier sur le module la bonne position du jumper.

En LoraWan, il existe 2 types d'activation : ABP ou OTAA.

⇒ A l'aide de la documentation (page 26), indiquer le mode d'activation retenue par le module et préciser alors les clés nécessaires pour la déclaration du module sur le serveur LoraWan.

⇒Vérifier la réponse précédente en relevant la présence des clés inscrites à l'arrière du boîtier (inutile de les noter).

⇒ A l'aide de la fiche produit du module, préciser comment s'effectue l'alimentation et l'autonomie lors d'une transmission toutes les 15mn.

Les dispositifs LoraWan peuvent fonctionner suivant 3 classes différentes (A, B ou C).

⇒ Préciser la classe utilisée par le module Enless (page 26) et indiquer si cette classe permet le downlink (voir cours).

Paramétrage de la passerelle LoraWan

Dans le menu LoRa de la passerelle du lycée, on a relevé la configuration ci-dessous.

⇒ Entourer sur cette capture d'écran : l'adresse du serveur TTN, le numéro de port (UDP) utilisé et l'identifiant de la passerelle.

Laird	Dashboard LAN	Wi-Fi LoRa Settings			
Presets		Mode			
Forwarder		Semtech Forwarder	~		
Radios					
Advanced		Network Server Address		Port Up	Port Down
Traffic		eu1.cloud.thethings.network		1700	1700
		Update			
Gateway Connected	true				
Gateway EUI	C0EE40FFFF296920				
Region Code	EU				
Mode	semtech				

Paramétrage de TTN

- ⇒ Se rendre sur le site de TTN : <u>https://www.thethingsnetwork.org</u>
- ⇒ Se loguer avec le compte : <u>guy.colin@ac-lille.fr</u> et mot de passe : •••••••• (à demander au prof).
- ⇒ Se rendre dans le menu « Console ».
- \Rightarrow Choisir la zone Europe
- 🗢 Dans le menu Gateways, vérifier que la passerelle carnot est connectée et relever son numéro EUI. Comparer
- ce numéro à l'identification de la passerelle du lycée.
- ⇒ Dans le menu Applications, vérifier la présence de l'application contact-enless.
- ⇒ Dans l'application contact-enless, vérifier la présence du End Device avec son identifiant DevEUI.

⇒ En cliquant sur l'ID du End Device, relever le plan de fréquence retenu, la version LoraWan et vérifier la présence des différentes clés.

Remarque : Dans le menu Payload formatters/Uplink , mettre le format Custom Javascript formatter (celui mis par défaut) permet d'obtenir les données en clair dans le fichier JSON transmis.

<> Payload formatters Uplink	^ .	Formatter type *	י אפעי/כאןאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאא
Downlink Integrations Collaborators	~	Formatter code* 255, 11, 144, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Données décodées

⇒ Dans le menu Live data, relever la périodicité d'envoi des données par le module Enless.

⇒ En cliquant sur une trame de données (menu Live data), visualiser le fichier JSON et retrouver quelques informations comme : dev_eui, app_eui, dev_addr, les données décodées, l'identifiant de la passerelle....

⇒ Dans le menu Integrations/MQTT, noter : l'adresse du server MQTT et le port public, le login. Le mot de passe sera fourni.

Adresse BROKER :	Port public :
Login Username :	

Récupération des données sous NODERED

⇒ Sous Nodered , réaliser le flow suivant et configurer le node MQTT IN (le mot de pase sera fourni). Prendre un QoS à 0 et une sortie (Output) sous un format JSON. Valider la configuration du flow MQTT uniquement dans le flow courant (et non all flow, pour éviter les conflits). Le login et le mot de passe sont à renseigner dans la partie Security.

Le topic doit être de la forme suivante :

v3/{application id}@{tenant id}/devices/{device id}/up

Soit ici : v3/contact-enless@ttn/devices/eui-70b3d54fd0006bff/up

⇒ Observer dans la fenêtre DEBUG le fichier JSON reçu, lorsqu'on ferme un contact des données sont transmises (demander au prof).

- 13/03/2023 15:50:41 node: 8ea67d67.604188 v3/contact-enless@ttn/devices /eui-70b3d54fd0006bff/up : msg.payload : Object ▼object > end_device_ids: object ▶ correlation_ids: array[7] received_at: "2023-03-13T14:50:41.454978114Z" vuplink_message: object session_key_id: "AYa4BvHojIIBj5scGsfyzw==" f_port: 1 f cnt: 680 frm_payload: "AGv/C6YJAAAAMAAAAAEAAAAAAAAAAAAQQ==" vdecoded_payload: object ▶ bytes: array[22] ▶ rx_metadata: array[1] ▶ settings: object
- ⇒ Ajouter la fonction, comme ci-dessous, pour extraire le tableau des données décodées :

ui-70b3d54fd0006bff/up msg.payload	<pre>v3/contact-enless@ttn/devices /eui-70b3d54fd0006bff/up : msg.payload : array[22]</pre>
function msg.payload	20: 0 21: 65
Setup On Start On Message On Stop 1 msg.payload=msg.payload.uplink_message.decoded_payload.bytes;	Le chemin peut être récupéré en cliquant sur Copy path
2 return msg;	<pre> decoded_payload: object bytes: array[22] [0 9] [10 19] [20 21] </pre> Copy path

Le format des données transmises est fournie par Enless et il est donné ci-dessous avec un exemple :

Enter	oRaW	AN String Below	w for Analys	5	0																	
0000B	40B0E0	10000001800	000028000	0005600040041																		
Start	Count	HEX VALUE	DEC / BIN																			
1	6	0000B4	180	Transmitter ID																		
7	2	OB	11	11 = Tx Contact																		
9	2	0E	14	Sequential Counter																		
11	2	01	00000001	F/W (bits 3-0), Settings (bits	7-4)																	
13	8	00000018	24	Pulse Ch1																		
21	8	0000028	40	Pulse Ch2																		
29	8	00000056	86	Pulse OC																		
37	4	0004	4	Alarm Status	00000000	00000100	0	0	0	0	0	0	0	0	0	0	0	0	0	OC No Change Ain	Ch2 No Change OK	Ch1 No Change
41	4	0041	65	Status	00000000	01000001	0	0	0	0	0	0	0	0	OC Open	Ch2 Closed	Ch1 Open	0	0	0	0	Alarm
																			Bits 3-	2 for battery level		
																			1	Battery Level		
																				00 for 100%		
																				01 for 75%		
																				10 for 50%		
																				11 for 25%		

0000	340B0E	01000	0001	800	000028	800	000056	50004004	41						
Start	Count	HEX	VALUE		DEC / B	BIN	-								
1	6	00	00B4		180		Transm	itter ID							
7	2		OB		11		11 = Tx (Contact							
9	2		0E		14		Sequen	tial Counte	r						
11	2		01		000000	01	F/W (bi	ts 3-0), Sett	tings (bits 7-	4)					
13	8	000	00018		24		Pulse C	h1							
21	8	000	00028		40		Pulse C	h2							
29	8	000	00056		86		Pulse O	C							
37	4	(004		4		Alarm S	tatus		00000000	00000100	0			
41	4	(041		65		Status			00000000	0100000	1			
												\searrow			
0	0	0	0	0	0	0	0	0	0	0	0	0	OC No Change Alm	Ch2 No Change OK	Ch1 No Change
0	U	0	0	U	0	0	0	OC Open	Cn2 Closed	Ch1 Open	0	Bits 3	0 -2 for battery level Battery Level 00 for 100%	U	Alarm
													01 for 75% 10 for 50%		

Dans l'exemple ci-dessus, le dernier octet transmis $(41_{16} = 65_{10})$ donne comme information :

- Entrée collecteur ouvert Open
- Contact Ch2 fermé
- Contact Ch1 ouvert
- Batterie 100%
- Alarme active.

⇒ De la même manière, donner la valeur de ce dernier octet dans le cas où : OC Open – Ch2 Open – Ch1 Closed – Batterie à 50% - Alarme active.

 \Rightarrow Modifier sous NODERED la fonction pour extraire uniquement le dernier octet (soit l'octet 21, remplacer bytes par bytes[21]).

Pour isoler un ou plusieurs bit(s), on peut faire un ET comme ci-dessous :

	B7	B6	B5	B4	B3	B2	B1	B0
	х	х	х	х	х	х	х	х
AND	0	0	1	0	0	0	0	1
=	0	0	х	0	0	0	0	х

A l'exception des bits B5 et B0, les autres bits sont forcés à 0. Si le résultat est 0b00100001=0x21=33, alors les bits B5 et B0 sont à 1.

Ajouter les fonctions suivantes au flow NODERED :

⇒ Indiquer les bits testés dans ce cas et préciser l'information qui correspond à ces bits.

⇒ Vérifier la réception d'un message Telegram lorsque le contact se ferme.

Remarque : ce genre d'application est utilisée dans le cadre où on veut surveiller l'ouverture d'une armoire électrique isolée des autres bâtiments.