LAB2

Objectif : Passer en revue les principales fonctions du boîtier MyRio.

1 - Test du boîtier

⇒ Brancher le boîtier MyRio au PC en liaison USB et si les drivers sont bien installés, on obtient la fenêtre suivante

🐛 NI myRIO I	USB Monito	F.	-	×
\bigcirc	NI-myR	102		
Serial	Number:	03060B2C		
IP Add	lress:	172.22.11.2		
Options -				
>>>	Launch the	e Getting Starte	ed Wizard	
>>>	Go to LabV	/IEW 201 <mark>4</mark>		
>>>	Launch the	e I/O Monitor		
>>>	Configure	NI myRIO		
>>	Do Nothin	g		

⇒ Cliquer sur "Launch the Getting Started Wizard" pour obtenir la fenêtre suivante (après 2 Next).

⇒ Tester le capteur d'accélération en faisant tourner le boîtier, tester le bouton "BUTTON0" placé sur le boîtier et la commande des LEDS.

⇔ Fermer la fenêtre

2 – Test des LED et de BUTTONO

- ⇒ Lancer LABVIEW 2014
- ⇒ Créer un nouveau projet : Fichier / Créer un projet

⇒ Choisir myRIO et myRIO Project

⇒ Donner un nom au projet (led_btn) et le sauvegarder dans un répertoire de l'espace de travail (avec le même nom). Laisser la cible (Target) connectée à l'USB (Plugged into USB).

⇒ Dans le projet , ouvrir Main.vi

🖪 led_bt	n.lvproj - Explo	orateur de pro	jet					-
Fichier É	dition Afficha	age Projet	Exécution	Outils	Fenêtre	Aide		
💕 🛃	📴 + 🌮 🤰	\]] 👫 🗊	2 🛛 🗋 🔍	1 2 CL	4			
Éléments	Fichiers							
	Poste de trava Project Do Spécificati myRIO-1900 (Main.vi Spécificati	ons de constr 172.22.11.2)	uction uction					

⇒ Afficher le diagramme créé par défaut

⇒ Modifier la boucle principale pour obtenir le diagramme ci-dessous et faire une démo au prof.
NB : Les fonctions se trouvent dans la partie myRIO .

3 – Test d'une entrée/sortie numérique

⇒ Fermer le projet courant et créer un nouveau projet comme précédemment (nom : dig_in_out).

⇒ Modifier la boucle principale pour obtenir le diagramme ci-dessous. La sortie utilisée sera la patte DIO13 du connecteur A.

⇒ Brancher la plaquette de test sur le connecteur A, et câbler une LED avec une résistance.

⇒ Tester le fonctionnement de la LED et faire une démo au prof.

⇒ A l'aide du guide de Myrio, indiquer si les lignes DIO du connecteur A disposent d'une résistance de PullUp ou de PullDown. Préciser la valeur de cette résistance dans chaque cas.

⇒ Proposer une modification du vi pour tester (en plus de la sortie DIO13) l'entrée DIO0.

 \Rightarrow Pour tester le fonctionnement et éviter un court-circuit franc, utiliser une résistance de 1k Ω pour mettre l'entrée à 0. Faire une démo au prof.

4 – Test d'une sortie PWM

⇒ Fermer le projet courant et créer un nouveau projet comme précédemment (nom : pwm).

⇒ Modifier la boucle principale pour obtenir le diagramme et la face avant ci-dessous. La sortie PWM utilisée sera la patte DIO3 du connecteur C.

⇒ Tester à l'oscilloscope le signal généré en faisant varier les curseurs. Faire une démo au prof.

5 - Test d'une sortie et d'une entrée analogiques

⇒ Fermer le projet courant et créer un nouveau projet comme précédemment (nom : analog).

⇒ Modifier la boucle principale pour obtenir le diagramme et la face avant ci-dessous. La sortie utilisée sera la patte AO0 du connecteur A.

⇒ Tester à l'oscilloscope le signal généré en faisant varier le curseur. Faire une démo au prof.

⇒ Ajouter au vi l'acquisition d'une entrée analogique et affichage sur graphe déroulant. Ajouter une temporisation de 100ms à la boucle pour prendre 10 échantillons par seconde. Voir ci-dessous .

 \Rightarrow Boucler la sortie AO0 sur l'entrée AI0 (avec une résistance de 1kΩ de préférence pour éviter un court-circuit). ⇒ Faire une démo au prof.

6 – Test de l'UART

⇒ Fermer le projet courant et créer un nouveau projet comme précédemment (nom : uart).

⇒ Modifier la boucle principale pour obtenir le diagramme ci-dessous (ne pas oublier la temporisation de 1s). La configuration est la suivante :

Configuration	()	View Code	Connection				
Node name:	UART						
Channel:	A/UART (ASRL1::INSTR)						
Connections:	RX: Pin 10, TX: Pin 14						
Mode:	Write						
	ORead	🗌 Read all availab	ole				
Communicatio	on settings						
Baud rate:	9600		\sim				
Data bits:	8		\sim				
Parity:	None		~				
Stop bits:	1.0		~				

⇒ A l'aide d'un boîtier SQ200, relever la trame transmise et conclure.